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In mass spectrometry-based bottom-up proteomics, da-
ta-independent acquisition is an emerging technique be-
cause of its comprehensive and unbiased sampling of
precursor ions. However, current data-independent ac-
quisition methods use wide precursor isolation windows,
resulting in cofragmentation and complex mixture spec-
tra. Thus, conventional database searching tools that
identify peptides by interpreting individual tandem MS
spectra are inherently limited in analyzing data-indepen-
dent acquisition data. Here we discuss an alternative ap-
proach, peptide-centric analysis, which tests directly for
the presence and absence of query peptides. We discuss
how peptide-centric analysis resolves some limitations of
traditional spectrum-centric analysis, and we outline the
unique characteristics of peptide-centric analysis in
general. Molecular & Cellular Proteomics 14: 10.1074/
mcp.O114.047035, 2301–2307, 2015.

Tandem mass spectrometry has become the technology of
choice for proteome characterization. In a typical bottom-up
proteomic experiment, a mixture of proteins is proteolytically
digested into peptides, separated by liquid chromatography,
and analyzed using tandem mass spectrometry. The ultimate
goal is to identify and quantify proteins by detecting and
quantifying individual peptides, thereby shedding light on the

underlying cellular mechanisms or phenotype. Several modes
of data acquisition have been developed for bottom-up pro-
teomics. The most commonly applied mode uses data-de-
pendent acquisition (DDA)1, in which tandem MS (MS/MS)
spectra are acquired from the dissociation of precursor ions
selected from an MS survey spectrum. Constrained by the
speed of instrumentation, DDA can sample only a subset of
precursor ions for MS/MS characterization, generally target-
ing the top-N most abundant ions detected in the most recent
survey spectrum. In addition, DDA is typically coupled with a
method referred to as “dynamic exclusion” (1) that attempts
to prevent reselection of the same m/z for some specified
period of time. These acquisition strategies greatly increase
proteome coverage and extend the dynamic range of detec-
tion for shotgun proteomics. The resulting MS/MS spectra are
typically analyzed using sequence database searching soft-
ware such as SEQUEST, Mascot, X!Tandem, MaxQuant,
Comet, MS-GF�, or OMSSA (2–8). Because these algorithms
identify peptides by first associating each individual spectrum
with a matching peptide sequence and then aggregating the
thus matched spectra into a list of identified peptides, we refer
to them as “spectrum-centric analyses.” In spectrum-centric
analysis, spectra are most commonly interpreted using data-
base searching, but can also be interpreted using de novo
sequencing (9–11), or by searching against a spectrum library
(12–14). For the past two decades, spectrum-centric analysis
has been an essential driving force for the development of
large-scale shotgun proteomics using DDA.

DDA is a powerful and well-established technique for LC-
MS/MS data acquisition. By targeting precursor ions ob-
served in MS survey scans with highly selective MS/MS
scans, DDA generates a large set of high quality MS/MS
spectra, which can be automatically interpreted by data-
base searching to identify thousands of proteins in a com-
plex sample. When DDA was introduced, instrumentation
was not fast enough to sample every observed precursor in
the survey scan; thus, high-intensity precursors were prefer-
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entially targeted because they tend to generate higher quality
MS/MS spectra that lead to peptide identification. Although
this stochastic sampling approach results in a large amount of
peptide identification in a single sample run, it comes at the
cost of reproducibility of MS/MS acquisition between sample
analyses and an inherent bias against low abundance ana-
lytes that are less likely to be sampled (15). On modern
instrumentation, the speed of MS/MS acquisition has dramat-
ically improved to the point where the majority of MS precur-
sors that are not already in the dynamic exclusion list can be
sampled for MS/MS analysis. However, even if every precur-
sor observed in each survey MS scan is sampled, DDA is still
biased against low abundance analytes that fall below the
limit of detection in the MS analysis and will never be sam-
pled. This bias is a practical limitation in the analysis of a
complex mixture with high dynamic range in which many
analytes will be below the limit of detection in MS analysis, but
remain detectable by the more selective and more sensitive
MS/MS analysis (16).

DDA remains a powerful method for identifying a large
number of proteins in a sample. However, because of the
incomplete sampling, when a peptide is not identified in a
conventional shotgun experiment using DDA, it is incorrect to
conclude that the peptide is missing from the sample, or even
below the limit of detection of MS/MS, because the peptide
ions may have never been sampled for MS/MS analysis. To
overcome such limitations, targeted acquisition approaches
such as selected reaction monitoring (SRM, also commonly
referred to as multiple reaction monitoring) are often the meth-
ods of choice. In targeted acquisition approaches, a set of
predetermined precursor ions are systematically subjected to
MS/MS characterization throughout the LC time domain. The
collision energy for each targeted ion can be optimized for
fragmentation efficiency. The resulting data are typically ana-
lyzed using “targeted analysis” (17–19), in which the software
looks for the co-eluting patterns from a group of predeter-
mined pairs of precursor–product ions (called transitions).
With systematic MS/MS sampling and the combined speci-
ficity of chromatographic retention time, precursor ion mass,
and the distribution of product ions, targeted acquisition al-
lows highly sensitive and reproducible detection of the tar-
geted analytes within a complex mixture.

Modern targeted acquisition approaches are the gold
standard for sensitively and reproducibly measuring hundreds
of peptides in a single LC-MS/MS run (20–22). However, data
acquired in this manner is only informative for the set of
peptides targeted for analysis. Because of this narrow focus,
iterative testing of different hypotheses (i.e. a different set of
target peptides) also requires iterative acquisition of additional
data. Moreover, assay development often requires retention
time scheduling and/or refinement steps to find the optimal
peptides and transitions for testing a particular hypothesis.

With the existence of two complementary but distinct ap-
proaches—DDA for broad sample characterization and tar-

geted acquisition for interrogation of a specific hypothesis—
the natural question is if the benefits of both techniques may
be combined in a single technique. A potential solution is an
alternative mode of bottom-up proteomics referred to as da-
ta-independent acquisition (DIA) that has been described and
realized with various implementations (16, 23–32). In DIA, the
instrument acquires MS/MS spectra systematically and inde-
pendently from the content of MS survey spectra. These DIA
approaches differ from DDA methods, targeted acquisition
methods, and from each other in MS/MS isolation window
width, total range of precursor m/z covered, duration of com-
pleting one cycle of isolation scheme (called the cycle time),
single or multiple isolation windows per MS/MS analysis, and
instrument platform. Because of the benefits of systematic
sampling of the precursor m/z range by MS/MS, data from a
single DIA experiment can be useful for both peptide detec-
tion and quantification in a complex mixture. Similar to DDA
approaches, DIA data is broadly informative because the
MS/MS characterization is not specific to a predefined set of
peptide targets. Similar to targeted approaches, MS/MS in-
formation of peptides across the entire LC time domain can
be extracted from DIA data to test a particular hypothesis. As
the acquisition speed of modern instrumentation continues to
increase, DIA has become more popular because of its com-
prehensive and unbiased sampling.

Although DIA resolves the problem of biased or incomplete
MS/MS sampling, current DIA methods come with compro-
mises (33), where the most common compromise is precursor
selectivity. Constrained by the speed and accuracy of instru-
mentation, DIA methods typically use five- to 10-fold wider
isolation windows compared with DDA to achieve the same
breadth and depth of a single LC-MS/MS run. Because of this
reduction in precursor selectivity, MS/MS spectra from DIA
are noisier than DDA spectra. In particular, DIA by design
generates mixture spectra, each containing product ions from
multiple analytes with various abundance and different charge
states. Fragmenting multiple analytes together also precludes
DIA from tailoring collision energy for every analyte, a stan-
dard optimization in DDA and targeted acquisition.

The low precursor selectivity and resulting complexity of
DIA spectra severely challenges the performance of traditional
spectrum-centric analysis, which generally assumes that the
detected product ions were derived from a single, isolated
precursor. The major challenges in interpreting mixture spec-
tra lie in allowing for multiple contributing precursor ions,
assessing the dynamic range of mixture peptides, distributing
intensities of product ions shared by contributing peptides,
and adjusting statistical confidence estimates. Because al-
most every spectrum is mixed in DIA data, it is poorly suited
for analysis by classic spectrum-centric approaches initially
designed for DDA data. Some sophisticated spectrum-centric
approaches (34–39) address these challenges by deconvolv-
ing mixture spectra into pseudo spectra or by matching mix-
ture spectra to combinations of product ions from multiple
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candidate peptides. However, identification of low abundance
analytes by interpreting mixture spectra is inherently difficult
because the MS/MS signals from low abundance analytes are
naturally overwhelmed by the signals from high abundance
ones.

Recently, Gillet et al. demonstrated an alternative approach
that analyzes DIA data in a targeted fashion (24), opening a
new door for the investigation of tandem mass spectrometry
data. Much like targeted analysis of transitions used in tar-
geted acquisition methods, Gillet et al. use extracted ion
chromatograms to detect and quantify query peptides. Simi-
larly, Weisbrod et al. identify peptides by searching peptide
fragmentation patterns against DIA data (25). Instead of inter-
preting individual spectra in a spectrum-centric fashion, these
alternative approaches take each peptide of interest and ask:
“Is this peptide detected in the data?” We refer to this ap-
proach as “peptide-centric analysis” in contrast with “spec-
trum-centric analysis.” In peptide-centric analysis, each pep-
tide is detected by searching the MS and MS/MS data for
signals selective for the query peptide. Peptide-centric anal-
ysis covers all methods that use peptides as an independent
query unit, including but not limited to the targeted analysis.
Peptide-centric analysis is intrinsically very different from
spectrum-centric analysis (Table I, Fig. 1) and better suited for
addressing many biological problems. This perspective dis-
cusses the analytical advantages of peptide-centric analysis
and how they could translate to improvements in protein
inference, and the analysis of DIA data.

Unique Characteristics of Peptide-Centric Analysis—
I. Direct Statistical Measurements of Query Peptides—A

drawback of spectrum-centric analysis is that the confidence
estimates for peptides are indirect. In spectrum-centric anal-
ysis, each MS/MS spectrum is first assigned at least one
peptide identity, yielding a large set of peptide-spectrum
matches (PSMs). These PSMs are classified into accepted or
not accepted by methods (40–43) that assign to each PSM
statistical confidence estimates, indicating the confidence of
either a set of PSMs being correct (e.g. FDR) or an individual
PSM being correct (e.g. p values and E-values). Subse-
quently, peptide-level confidence estimates can be assigned
by aggregating the best PSM per peptide in a postprocessing
step (43, 44). Because the query unit for spectrum-centric
analysis is an MS/MS spectrum, only the peptides that are

matched to at least one spectrum are subject to the peptide
level statistical tests. As a result, only this subset of peptides
is assigned statistical confidence estimates, and the remain-
ing peptides are implicitly considered missing.

Peptide-centric analysis, on the other hand, tests every
peptide queried, providing direct and complete statistical
measurements. The goal of peptide-centric analysis is to as-
certain whether a query peptide was detected in an experi-
ment. Thus, in a given data set, all of the query peptides can
be separated into those with or without evidence of detection
(i.e. detected or not detected). An empirical null can be esti-
mated by generating decoy query peptides with shuffled se-
quences, measuring the null score distribution, and calculat-
ing p values and q-values for every query peptide using
common statistical methods (40, 43, 45). With peptide-centric
analysis, direct peptide-level testing makes answering biolog-
ical questions more straightforward, and the completeness of
statistical measurements makes subsequent comparison and
quantification much easier.

Peptide-centric analysis could be very useful when consid-
ering the protein inference problem, which involves estimating
the set of detected proteins from the set of detected peptides
(46). Protein inference is heavily affected by the observed
peptides. The value of peptide-centric analysis is that each
peptide in a database can be directly assigned a confidence
estimate of being detected/not detected because each pep-
tide is directly investigated. In contrast, spectrum-centric
analysis implicitly assigns all “missing” peptides equal, very
low confidence estimates. These imputed confidence esti-
mates could lead to biases in the inferred set of detected
proteins. This includes peptides that distinguish splice iso-
forms or paralogs. Therefore, when comparing the result
from a peptide-centric analysis to the detectability of such a
peptide (47, 48), it is possible to begin to probabilistically
evaluate the presence/absence of a protein isoform. With
directly tested peptide probabilities, peptide-centric analysis
makes the input of protein inference more straightforward and
transparent.

II. Considerations for Mixture Spectra—When investigating
a complex proteome with shotgun proteomics, mixture
spectra are a common occurrence. Although conventional
DDA uses narrow isolation windows (typically �2 m/z-wide)
targeting single precursor ion species for fragmentation, as

TABLE I
Analytical comparison of spectrum-centric analysis versus peptide-centric analysis

Spectrum-centric analysis Peptide-centric analysis

Query unit MS/MS spectrum Peptide
Assumption Each spectrum is generated from at least one peptide Each peptide elutes once (for a short period of time)

during liquid chromatography
Goal Identify peptide(s) from each spectrum Find evidence of detection for each peptide
Scoring Candidate peptides from the sequence database compete

with each other for the best scoring PSM
Candidate spectra from the acquired data compete with

each other for the best scoring evidence of detection
Example tools SEQUEST, Comet, MASCOT, X!Tandem, OMSSA, ProbID,

MS-GF�, MaxQuant
FT-ARM, OpenSWATH, Skyline, SALSA

Peptide-Centric Analysis for MS/MS Data

Molecular & Cellular Proteomics 14.9 2303



many as 50% of the MS/MS spectra are mixed (35, 39, 49).
The frequency and impact of mixture spectra in a DDA
experiment vary with the sample complexity, LC separation,
acquisition parameters, and instrumentation. Some studies
used isolation windows as narrow as 0.7 m/z-wide to min-
imize unwanted precursor ions from being co-isolated and
cofragmented (15, 50). In the context of DIA, all spectra are
essentially mixture spectra because DIA isolates and frag-
ments all precursor ions within a wide m/z range. As dis-
cussed previously, identification of multiple components in
a mixture spectrum is challenging: Most spectrum-centric
software is designed to identify a single component from
each spectrum.

Peptide-centric analysis excels in handling mixture spectra
because it does not interpret individual spectra. Rather than
deconvolving each individual spectrum, peptide-centric
analysis searches for evidence of detection for individual
peptides, explicitly tolerating cofragmentation. Although
spectrum-centric analysis struggles to identify multiple

components with wide dynamic range from each mixture
spectrum, peptide-centric analysis queries each peptide in-
dependently from other peptides. This subtle but significant
change of query unit (Table I) shifts the problem from “pep-
tides competing with each other to explain the mixture spec-
trum” to “spectra competing with each other to represent the
query peptide.” With peptide-centric analysis, a single spec-
trum can be the top-scoring evidence of detection for multiple
distinct peptides, as expected in the case of mixture spectra.
In addition, peptide-centric analysis readily benefits from the
systematic sampling of DIA when each analyte is sampled
multiple time across its chromatographic peak. Conversely,
even if the product ions of the query peptide comprise the
minority of the mixture spectra, peptide detection can still be
achieved using peptide-centric analysis.

III. Roles of Precursor Ion Signals—Precursor information is
a powerful component of MS/MS data analysis. Inherently
designed to identify DDA spectra, spectrum-centric ap-
proaches typically use precursor information as a “filter” to

FIG. 1. Spectrum-centric analysis and peptide-centric analysis. In spectrum-centric analysis, each MS/MS spectrum from either a DDA
or DIA experiment is queried against a protein sequence database. The peptides that yield the best scoring N statistically significant PSMs are
assigned to the corresponding MS/MS spectrum. Typically N is one for a DDA spectrum and multiple for a DIA spectrum (showing N � 4 here).
In peptide-centric analysis, every peptide of interest is queried against the acquired MS/MS data. The bottom-middle panel shows the extracted
MS/MS signal of the query peptide over time in which the signal is extracted from any MS/MS spectrum generated from isolating the query
precursor m/z. The extraction window width corresponds to the acquisition method, showing here 2 m/z for DDA and 10 m/z for DIA. The precursor
m/z of the query peptide is sampled stochastically and sparsely in DDA but systematically in DIA. The MS/MS signal that provides the best scoring
evidence of detection is assigned to the query peptide (indicated by the arrows).
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constrain peptide candidates for PSMs (2–8). These ap-
proaches assign precursor ion(s) to each spectrum in various
ways spanning from using the un-processed precursor ion
target, considering multiple monoisotopic ions in the isolation
window, to detecting peptide features in the MS space. With
high mass measurement accuracy and high resolution instru-
ments, spectrum-centric searches could allow for only �10
ppm of monoisotopic mass tolerance, thus greatly reducing
the number of peptide candidates for PSMs and reducing the
false discovery rate.

In the context of analyzing DIA data there is no clear con-
sensus on how to use precursor information. Recent DIA
methods emphasize the systematic measurement of both
precursor and product ions, allowing for the detection of
precursor and product ions that covary over elution time and
likely are derived from the same analyte (26). This concept of
detecting covarying precursor-product ion groups has been
used to generate deconvolved spectra from DIA spectra.
Each deconvolved spectrum contains precursor and product
ions ostensibly derived from a single analyte and are thus
more compatible with spectrum-centric analysis (51, 52).

Peptide-centric approaches could also use precursor infor-
mation as evidence of detection. Rardin et al. recently dem-
onstrated improved quantification from DIA data using Skyline
with precursor ion filtering and transition filtering by correla-
tion analysis (18, 53). Although filtering with precursor ions
and precursor-product groups improves selectivity and spec-
ificity, the detection process could reduce sensitivity because
analytes may have no MS signal, or an MS signal with sub-
stantial chemical noise despite having an MS/MS signal ame-
nable for quantification. One way to incorporate precursor
information without reducing sensitivity is to use it as a scor-
ing feature rather than a filter, which is employed in some
peptide-centric approaches such as the algorithms used in
Skyline (18). When analyzing complex mixtures, incorporating
precursor information without filtering may provide greater
confidence in peptide detection for analytes with a signal in
MS spectra without compromising sensitivity by eliminating
analytes that may have an MS/MS signal but no detectable
MS signal.

Applications of Peptide-Centric Analysis—Peptide-centric
analysis is particularly suited for DIA experiments given its
advantages in handling mixture spectra. In addition, peptide-
centric analysis can easily incorporate valuable properties
from DIA data, such as retention time and elution profile, that
are commonly ignored by spectrum-centric analysis. For ex-
ample, Gillet et al. demonstrated peptide detection and quan-
tification by extracting peptide-specific product ion chro-
matograms, or extracted ion chromatograms, from DIA data
using 26-m/z SWATH acquisition (24). Weisbrod et al. dem-
onstrated peptide detection and quantification by searching
theoretical or empirical peptide fragmentation patterns
against the DIA data acquired using high mass accuracy
Fourier transform-all reaction monitoring (FT-ARM) of 100-

m/z wide isolation windows (25). With low precursor selectiv-
ity and high intrascan dynamic range in both cases, correctly
interpreting the spectra using spectrum-centric analysis is
extremely challenging.

Peptide-centric analysis can also be applied to DDA data.
For example, Liebler et al. used a pattern recognition algo-
rithm (SALSA) to search for peptide-specific ion series against
the DDA MS/MS spectra (54). Because of the stochastic
nature of the DDA data, the evidence for peptide detection
appears sparse and scattered compared with analyzing DIA
data (Fig. 1). Nonetheless, peptide-centric analysis provides
statistical measure for every query peptide regardless of
whether the data is sparse or dense. In addition, given that
many DDA spectra are mixed, peptide-centric analysis retains
the benefits of handling of mixture spectra when analyzing
DDA data.

Extensible Framework for Mass Spectrometry—This con-
cept of defining peptides as analytes and directly searching
for their evidence of detection generalizes into a broader
paradigm, which we call “analyte-centric analysis.” Analyte-
centric analysis comprises any method that uses the analyte
as the query unit to ask whether the analyte is detected or not.
It includes the traditional targeted data analysis, but is not
limited to the methods that scores based on transitions or
extracted ion chromatograms. The analyte of interest can be
naturally extended from peptides to include small molecules,
peptides with modifications, intact proteins, lipids and metab-
olites. In this analyte-centric paradigm, any properties of an
analyte can be naturally incorporated into the score that sum-
marizes the evidence supporting an analyte being detected.
For example, “Does the discovered fragmentation evidence
coincide with chromatographic expectations?” Also, as mass
spectrometer resolution continues to improve toward fine-
scale isotope resolution (55), the analyte-centric approach
can discriminate an isotopic profile based on the elemental
composition of the analyte.

One of the subtle but significant benefits of analyte-centric
analysis is the change in the query unit and null hypothesis. In
the spectrum-centric approach, validation programs that
modeled a false distribution of decoy hits were in reality
posing the null hypothesis as, “This spectrum is made up of a
random analyte.” For analyte-centric analysis, the null hypoth-
esis is, “The analyte is not detected in the data.” This more
direct hypothesis is better suited for answering most biolog-
ical problems.

CONCLUSIONS

In this perspective, we discuss the analytically unique char-
acteristics of peptide-centric analysis compared with tradi-
tional spectrum-centric analysis in analyzing shotgun pro-
teomics data. Specifically, peptide-centric analysis provides
direct statistical measurements for every peptide, and could
improve the analysis of mixture spectra common in DIA data.
We also discussed how peptide-centric approaches could
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use precursor signals as essential or supporting evidence of
detection. As mass spectrometry instruments continue to im-
prove in acquisition speed, DDA will be able to sample deeper
for lower abundance analytes and DIA will be able to system-
atically acquire MS/MS spectra with improved precursor se-
lectivity or a shorter cycle time. Analysis of the resulting large
collections of data could benefit from the alternative peptide-
centric approaches. Specifically, changing the perspective
from identifying as many spectra as possible to confidently
detecting peptides from an experiment greatly benefits pro-
tein inference and quantitative comparison. The fact that the
same peptide is fragmented in DIA data sets multiple times
generating a chromatographic elution profile for each product
ion further increases the achievable quantitative accuracy.
Furthermore, a peptide-centric perspective can be naturally
extended to other analytes such as intact proteins, lipids, and
metabolites. We hope the analytical advantages of analyte-
centric analysis over spectrum-centric analysis will incite the
field to further advance bioinformatics and statistical solutions
for analyzing mass spectrometry data.
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